Search results for "transverse effects"

showing 6 items of 6 documents

Multidimensional shaping of spatiotemporal waves in multimode nonlinear fibers

2019

Recent experiments have shown that nonlinear wave propagation in multimode optical fibers leads to complex spatio-temporal phenomena. In this talk, we introduce new approaches for the control and optimization of nonlinear beam reshaping in the spatial, temporal and spectral dimensions. The first approach applies to spatial beam self-cleaning the technique of transverse wavefront shaping, which permits to launch an optimized input mode combination, that results in the stable generation of a whole nonlinear mode alphabet at the fiber output. The second approach introduces a longitudinal tapering of the core diameter of multimode active and passive fibers, which permits to generate ultra-wideb…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]multimode optical fibersOptical fiberPhysics::OpticsTapering02 engineering and technologyTransverse effectsSupercontinuum generation01 natural scienceslaw.invention010309 opticsOpticsKerr effectlawNonlinear fiber optics0103 physical sciencessolitonsComputingMilieux_MISCELLANEOUSPhysicsWavefront[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industrynonlinear opticsFiber amplifiersmultimode optical fibers; fiber lasers; nonlinear optics; solitons021001 nanoscience & nanotechnologyfiber lasersSupercontinuumNonlinear systemPhysics::Accelerator PhysicsFiber amplifiers; Kerr effect; Nonlinear fiber optics; Supercontinuum generation; Transverse effectsLaser beam quality0210 nano-technologybusinessBeam (structure)
researchProduct

Spatial beam cleaning in quadratic nonlinear medium

2018

We show experimentally that a laser beam scrambled by propagation in a short segment of multimode fiber may be cleaned by the nonlinear propagation in KTP cristal with type-II second-harmonic generation.

Multi-mode optical fiberMaterials sciencebusiness.industrynonlinear opticsPotassium titanyl phosphateSecond-harmonic generation02 engineering and technologyquadratic nonlinearity; transverse effects; nonlinear optics021001 nanoscience & nanotechnology01 natural sciences010309 opticsNonlinear systemchemistry.chemical_compoundOpticsQuadratic equationchemistryNonlinear medium0103 physical sciencestransverse effects0210 nano-technologybusinessquadratic nonlinearityLaser beamsBeam (structure)
researchProduct

Spatiotemporal pulse shaping with multimode nonlinear guided waves

2018

We experimentally and theoretically investigate complex temporal pulse reshaping that accompanies Kerr beam self-cleaning in multimode optical fibers. We also study the output beam shape dependence on initial conditions.

Optical fiberMaterials scienceand opticsPhysics::OpticsComputer Science::Human-Computer Interaction02 engineering and technologynonlinear fiber optics01 natural scienceslaw.invention010309 opticsOpticslawFiber laser0103 physical sciencesatomic and molecular physicsoptical and magnetic materialsComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industryelectronic021001 nanoscience & nanotechnologyPulse shapingPulse (physics)fiber lasersNonlinear systempulse propagation and optical solitonstransverse effectsPhysics::Accelerator Physicsfiber lasers; nonlinear fiber optics; pulse propagation and optical solitons; transverse effects; electronic optical and magnetic materials; atomic and molecular physics and opticsPhotonics0210 nano-technologybusinessBeam (structure)
researchProduct

Kerr beam self-cleaning in the telecom band

2019

Multimode graded index (GRIN) fibers received a renewed interest in recent years, in particular for the development of new laser sources [1]. In many cases, the use of GRIN fibers is limited by multimodal propagation, leading to a spatially modulated intensity distribution (speckles) at the fiber output. Recent studies have found that quasi-single mode propagation can be recovered in GRIN fibers by the so-called Kerr self-cleaning effect [2]. It consists in the spontaneous recovery of the spatial beam quality, without any frequency shift [2] (as opposed to, e.g., Raman beam self-cleaning [3]). This nonlinear process was only observed so far at laser wavelengths around 1 μm, for peak power l…

Materials scienceKerr effect02 engineering and technologyKerr effect; multimode fibers; transverse effects01 natural scienceslaw.invention010309 opticssymbols.namesakelaw0103 physical sciencesFiber[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSMulti-mode optical fiberbusiness.industry021001 nanoscience & nanotechnologyLaserWavelengthsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicLaser beam quality0210 nano-technologyTelecommunicationsbusinessRaman scatteringBeam (structure)
researchProduct

Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber

2017

International audience; We experimentally demonstrate that Kerr spatial self-cleaning of a pulsed beam can be obtained in an amplifying multimode optical fiber. An input peak power of 500 W only was sufficient to produce a quasi-single-mode emission from the double-clad ytterbium doped multimode fiber (YMMF) with non-parabolic refractive index profile. We compare the self-cleaning behavior observed in the same fiber with loss and with gain. Laser gain introduces new opportunities to achieve spatial self-cleaning of light in multimode fibers at a relatively low power threshold.

YtterbiumOptical fiberMaterials scienceKerr effectoptical fiberschemistry.chemical_elementcleaningPhysics::Optics02 engineering and technologyRefractive index profilefibers01 natural scienceslaw.invention010309 opticsOpticsKerr effectNonlinear optics fiberslawBrillouin scattering0103 physical sciencesFibercleaning; fibers; optical fibers[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryGainFiber optics sensors021001 nanoscience & nanotechnologyNonlinear wave mixingAtomic and Molecular Physics and OpticschemistryOCIS codes: (060.4370) Nonlinear optics fibers; (060.2370) Fiber optics sensors; (190.4420) Nonlinear opticstransverse effects in; (190.3270) Kerr effect; (190.4223) Nonlinear wave mixing.0210 nano-technologybusinessNonlinear optics transverse effects
researchProduct

Adaptive Kerr-Assisted Transverse Mode Selection in Multimode Fibers

2019

Multimode optical fibers (MMFs) have recently regained interest because of the degrees of freedom associated with their different eigenmodes. In the nonlinear propagation regime in particular, new phenomena have been unveiled in graded-index (GRIN) MMFs such as geometric parametric instabilities and Kerr beam self-cleaning [1, 2]. The speckled pattern observed at the output of the MMF at low powers, is transformed at high powers into a bell-shaped beam close to the fundamental mode. Recent work has also demonstrated that Kerr beam self-cleaning can lead to a low-order spatial mode, different from a bell-shape, by adjusting the laser beam in-coupling conditions [3]. An attractive way to syst…

PhysicsWavefrontMulti-mode optical fiberOptical fiberSpatial light modulatorbusiness.industryPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyKerr effect; multimode fibers; transverse effects01 natural sciencesTransverse modelaw.inventionmultimode fibers010309 opticsNonlinear systemOpticsKerr effectlaw0103 physical sciencestransverse effects0210 nano-technologyAdaptive opticsbusinessBeam (structure)
researchProduct